Updating conversion, creating readmes

This commit is contained in:
Jonas Zeunert
2024-04-19 23:37:46 +02:00
parent 3619ac710a
commit 08e75b0f0a
635 changed files with 30878 additions and 37344 deletions

View File

@@ -1,4 +1,4 @@
 Awesome Random Forest
 Awesome Random Forest
Random Forest - a curated list of resources regarding tree-based methods and more, including but not limited to random forest, bagging and boosting.
@@ -7,8 +7,7 @@
The project is not actively maintained.
!Join the chat at https://gitter.im/kjw0612/awesome-random-forest (https://badges.gitter.im/Join%20Chat.svg) 
(https://gitter.im/kjw0612/awesome-random-forest?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
!Join the chat at https://gitter.im/kjw0612/awesome-random-forest (https://badges.gitter.im/Join%20Chat.svg) (https://gitter.im/kjw0612/awesome-random-forest?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
!randomforest (https://31.media.tumblr.com/79670eabe93cdd448c15f5bcb198d0fb/tumblr_inline_n8e398YbKv1s04rc3.png)
@@ -57,8 +56,8 @@
Theory
Lectures
⟡ ICCV 2013 Tutorial : Decision Forests and Fields for Computer Vision (http://research.microsoft.com/en-us/um/cambridge/projects/iccv2013tutorial/) by Jamie Shotton and Sebastian Nowozin
  ⟡ Lecture 1 (http://techtalks.tv/talks/randomized-decision-forests-and-their-applications-in-computer-vision-jamie/59432/) : Randomized Decision Forests and their Applications in Computer Vision I (Decision 
Forest, Classification Forest, 
  ⟡ Lecture 1
 (http://techtalks.tv/talks/randomized-decision-forests-and-their-applications-in-computer-vision-jamie/59432/) : Randomized Decision Forests and their Applications in Computer Vision I (Decision Forest, Classification Forest, 
  ⟡ Lecture 2 (http://techtalks.tv/talks/decision-jungles-jamie-second-half-of-above/59434/) : Randomized Decision Forests and their Applications in Computer Vision II (Regression Forest, Decision Jungle)
  ⟡ Lecture 3 (http://techtalks.tv/talks/entropy-estimation-and-streaming-data-sebastian/59433/) : Entropy estimation and streaming data
  ⟡ Lecture 4 (http://techtalks.tv/talks/decision-and-regression-tree-fields-sebastian/59435/) : Decision and Regression Tree Fields
@@ -171,8 +170,8 @@
Human / Hand Pose Estimation
⟡ Microsoft Research Cambridge Paper-CHI (http://research.microsoft.com/pubs/238453/pn362-sharp.pdf) Video-CHI (http://research.microsoft.com/pubs/238453/pn362-sharp-video.mp4) 
 ****Paper-CVPR** (http://research.microsoft.com/pubs/162510/vm.pdf)** 
  ⟡ Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton, David Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, Yichen Wei, Daniel Freedman, Pushmeet Kohli, Eyal Krupka, Andrew 
Fitzgibbon, and Shahram Izadi, Accurate, Robust, and Flexible Real-time Hand Tracking, CHI 2015
  ⟡ Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton, David Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, Yichen Wei, Daniel Freedman, Pushmeet Kohli, Eyal Krupka, Andrew Fitzgibbon, and Shahram Izadi, 
Accurate, Robust, and Flexible Real-time Hand Tracking, CHI 2015
  ⟡ Jonathan Taylor, Jamie Shotton, Toby Sharp, and Andrew Fitzgibbon, The Vitruvian Manifold:Inferring Dense Correspondences for One-Shot Human Pose Estimation, CVPR 2012
⟡ Microsoft Research Haifa Paper (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Krupka_Discriminative_Ferns_Ensemble_2014_CVPR_paper.pdf) 
  ⟡ Eyal Krupka, Alon Vinnikov, Ben Klein, Aharon Bar Hillel, and Daniel Freedman, Discriminative Ferns Ensemble for Hand Pose Recognition, CVPR 2014
@@ -198,8 +197,7 @@
Low-Level vision
⟡ Super-Resolution
  ⟡ Technicolor R&I Hannover Paper 
(https://technicolor-my.sharepoint.com/personal/jordi_salvador_technicolor_com/_layouts/15/guestaccess.aspx?guestaccesstoken=2z88Le9arMQ7tcGGYApHmdM9Pet2AqqoxMBDcu6eRbc%3d&docid=0e7f0b9ed1d0f4497829ae6b2b0de
eec3) 
(https://technicolor-my.sharepoint.com/personal/jordi_salvador_technicolor_com/_layouts/15/guestaccess.aspx?guestaccesstoken=2z88Le9arMQ7tcGGYApHmdM9Pet2AqqoxMBDcu6eRbc%3d&docid=0e7f0b9ed1d0f4497829ae6b2b0deeec3) 
* Jordi Salvador, and Eduardo Pérez-Pellitero, Naive Bayes Super-Resolution Forest, ICCV 2015
  ⟡ Graz University of Technology Paper (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schulter_Fast_and_Accurate_2015_CVPR_paper.pdf) 
* Samuel Schulter, Christian Leistner, and Horst Bischof, Fast and Accurate Image Upscaling with Super-Resolution Forests, CVPR 2015