Updating conversion, creating readmes
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Random Forest[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome Random Forest[0m
|
||||
|
||||
[38;5;12mRandom Forest - a curated list of resources regarding tree-based methods and more, including but not limited to random forest, bagging and boosting.[39m
|
||||
|
||||
@@ -7,8 +7,7 @@
|
||||
|
||||
[38;5;12mThe project is not actively maintained.[39m
|
||||
|
||||
[38;5;14m[1m![0m[38;5;12mJoin[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mchat[39m[38;5;12m [39m[38;5;12mat[39m[38;5;12m [39m[38;5;12mhttps://gitter.im/kjw0612/awesome-random-forest[39m[38;5;14m[1m [0m[38;5;14m[1m(https://badges.gitter.im/Join%20Chat.svg)[0m[38;5;12m [39m
|
||||
[38;5;12m(https://gitter.im/kjw0612/awesome-random-forest?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)[39m
|
||||
[38;5;14m[1m![0m[38;5;12mJoin the chat at https://gitter.im/kjw0612/awesome-random-forest[39m[38;5;14m[1m (https://badges.gitter.im/Join%20Chat.svg)[0m[38;5;12m (https://gitter.im/kjw0612/awesome-random-forest?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)[39m
|
||||
|
||||
[38;5;12m![39m[38;5;14m[1mrandomforest[0m[38;5;12m (https://31.media.tumblr.com/79670eabe93cdd448c15f5bcb198d0fb/tumblr_inline_n8e398YbKv1s04rc3.png)[39m
|
||||
|
||||
@@ -57,8 +56,8 @@
|
||||
[38;2;255;187;0m[4mTheory[0m
|
||||
[38;2;255;187;0m[4mLectures[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mICCV 2013 Tutorial : Decision Forests and Fields for Computer Vision[0m[38;5;12m (http://research.microsoft.com/en-us/um/cambridge/projects/iccv2013tutorial/) by Jamie Shotton and Sebastian Nowozin[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture[0m[38;5;14m[1m [0m[38;5;14m[1m1[0m[38;5;12m [39m[38;5;12m(http://techtalks.tv/talks/randomized-decision-forests-and-their-applications-in-computer-vision-jamie/59432/)[39m[38;5;12m [39m[38;5;12m:[39m[38;5;12m [39m[38;5;12mRandomized[39m[38;5;12m [39m[38;5;12mDecision[39m[38;5;12m [39m[38;5;12mForests[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mtheir[39m[38;5;12m [39m[38;5;12mApplications[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m[38;5;12mComputer[39m[38;5;12m [39m[38;5;12mVision[39m[38;5;12m [39m[38;5;12mI[39m[38;5;12m [39m[38;5;12m(Decision[39m[38;5;12m [39m
|
||||
[38;5;12mForest,[39m[38;5;12m [39m[38;5;12mClassification[39m[38;5;12m [39m[38;5;12mForest,[39m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture 1[0m
|
||||
[38;5;12m (http://techtalks.tv/talks/randomized-decision-forests-and-their-applications-in-computer-vision-jamie/59432/) : Randomized Decision Forests and their Applications in Computer Vision I (Decision Forest, Classification Forest, [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture 2[0m[38;5;12m (http://techtalks.tv/talks/decision-jungles-jamie-second-half-of-above/59434/) : Randomized Decision Forests and their Applications in Computer Vision II (Regression Forest, Decision Jungle)[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture 3[0m[38;5;12m (http://techtalks.tv/talks/entropy-estimation-and-streaming-data-sebastian/59433/) : Entropy estimation and streaming data[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;14m[1mLecture 4[0m[38;5;12m (http://techtalks.tv/talks/decision-and-regression-tree-fields-sebastian/59435/) : Decision and Regression Tree Fields[39m
|
||||
@@ -171,8 +170,8 @@
|
||||
[38;2;255;187;0m[4mHuman / Hand Pose Estimation[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft Research Cambridge [39m[38;5;12mPaper-CHI[39m[38;5;14m[1m (http://research.microsoft.com/pubs/238453/pn362-sharp.pdf)[0m[38;5;12m [39m[38;5;12mVideo-CHI[39m[38;5;14m[1m (http://research.microsoft.com/pubs/238453/pn362-sharp-video.mp4)[0m[38;5;12m [39m
|
||||
[48;5;235m[38;5;249m ****Paper-CVPR** (http://research.microsoft.com/pubs/162510/vm.pdf)** [49m[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mToby[39m[38;5;12m [39m[38;5;12mSharp,[39m[38;5;12m [39m[38;5;12mCem[39m[38;5;12m [39m[38;5;12mKeskin,[39m[38;5;12m [39m[38;5;12mDuncan[39m[38;5;12m [39m[38;5;12mRobertson,[39m[38;5;12m [39m[38;5;12mJonathan[39m[38;5;12m [39m[38;5;12mTaylor,[39m[38;5;12m [39m[38;5;12mJamie[39m[38;5;12m [39m[38;5;12mShotton,[39m[38;5;12m [39m[38;5;12mDavid[39m[38;5;12m [39m[38;5;12mKim,[39m[38;5;12m [39m[38;5;12mChristoph[39m[38;5;12m [39m[38;5;12mRhemann,[39m[38;5;12m [39m[38;5;12mIdo[39m[38;5;12m [39m[38;5;12mLeichter,[39m[38;5;12m [39m[38;5;12mAlon[39m[38;5;12m [39m[38;5;12mVinnikov,[39m[38;5;12m [39m[38;5;12mYichen[39m[38;5;12m [39m[38;5;12mWei,[39m[38;5;12m [39m[38;5;12mDaniel[39m[38;5;12m [39m[38;5;12mFreedman,[39m[38;5;12m [39m[38;5;12mPushmeet[39m[38;5;12m [39m[38;5;12mKohli,[39m[38;5;12m [39m[38;5;12mEyal[39m[38;5;12m [39m[38;5;12mKrupka,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m
|
||||
[38;5;12mFitzgibbon,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mShahram[39m[38;5;12m [39m[38;5;12mIzadi,[39m[38;5;12m [39m[38;5;12mAccurate,[39m[38;5;12m [39m[38;5;12mRobust,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mFlexible[39m[38;5;12m [39m[38;5;12mReal-time[39m[38;5;12m [39m[38;5;12mHand[39m[38;5;12m [39m[38;5;12mTracking,[39m[38;5;12m [39m[38;5;12mCHI[39m[38;5;12m [39m[38;5;12m2015[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mToby[39m[38;5;12m [39m[38;5;12mSharp,[39m[38;5;12m [39m[38;5;12mCem[39m[38;5;12m [39m[38;5;12mKeskin,[39m[38;5;12m [39m[38;5;12mDuncan[39m[38;5;12m [39m[38;5;12mRobertson,[39m[38;5;12m [39m[38;5;12mJonathan[39m[38;5;12m [39m[38;5;12mTaylor,[39m[38;5;12m [39m[38;5;12mJamie[39m[38;5;12m [39m[38;5;12mShotton,[39m[38;5;12m [39m[38;5;12mDavid[39m[38;5;12m [39m[38;5;12mKim,[39m[38;5;12m [39m[38;5;12mChristoph[39m[38;5;12m [39m[38;5;12mRhemann,[39m[38;5;12m [39m[38;5;12mIdo[39m[38;5;12m [39m[38;5;12mLeichter,[39m[38;5;12m [39m[38;5;12mAlon[39m[38;5;12m [39m[38;5;12mVinnikov,[39m[38;5;12m [39m[38;5;12mYichen[39m[38;5;12m [39m[38;5;12mWei,[39m[38;5;12m [39m[38;5;12mDaniel[39m[38;5;12m [39m[38;5;12mFreedman,[39m[38;5;12m [39m[38;5;12mPushmeet[39m[38;5;12m [39m[38;5;12mKohli,[39m[38;5;12m [39m[38;5;12mEyal[39m[38;5;12m [39m[38;5;12mKrupka,[39m[38;5;12m [39m[38;5;12mAndrew[39m[38;5;12m [39m[38;5;12mFitzgibbon,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mShahram[39m[38;5;12m [39m[38;5;12mIzadi,[39m[38;5;12m [39m
|
||||
[38;5;12mAccurate,[39m[38;5;12m [39m[38;5;12mRobust,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mFlexible[39m[38;5;12m [39m[38;5;12mReal-time[39m[38;5;12m [39m[38;5;12mHand[39m[38;5;12m [39m[38;5;12mTracking,[39m[38;5;12m [39m[38;5;12mCHI[39m[38;5;12m [39m[38;5;12m2015[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mJonathan Taylor, Jamie Shotton, Toby Sharp, and Andrew Fitzgibbon, The Vitruvian Manifold:Inferring Dense Correspondences for One-Shot Human Pose Estimation, CVPR 2012[39m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mMicrosoft Research Haifa [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Krupka_Discriminative_Ferns_Ensemble_2014_CVPR_paper.pdf)[0m[38;5;12m [39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mEyal Krupka, Alon Vinnikov, Ben Klein, Aharon Bar Hillel, and Daniel Freedman, Discriminative Ferns Ensemble for Hand Pose Recognition, CVPR 2014[39m
|
||||
@@ -198,8 +197,7 @@
|
||||
[38;2;255;187;0m[4mLow-Level vision[0m
|
||||
[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mSuper-Resolution[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mTechnicolor[39m[38;5;12m [39m[38;5;12mR&I[39m[38;5;12m [39m[38;5;12mHannover[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m
|
||||
[38;5;14m[1m(https://technicolor-my.sharepoint.com/personal/jordi_salvador_technicolor_com/_layouts/15/guestaccess.aspx?guestaccesstoken=2z88Le9arMQ7tcGGYApHmdM9Pet2AqqoxMBDcu6eRbc%3d&docid=0e7f0b9ed1d0f4497829ae6b2b0de[0m
|
||||
[38;5;14m[1meec3)[0m[38;5;12m [39m
|
||||
[38;5;14m[1m(https://technicolor-my.sharepoint.com/personal/jordi_salvador_technicolor_com/_layouts/15/guestaccess.aspx?guestaccesstoken=2z88Le9arMQ7tcGGYApHmdM9Pet2AqqoxMBDcu6eRbc%3d&docid=0e7f0b9ed1d0f4497829ae6b2b0deeec3)[0m[38;5;12m [39m
|
||||
[48;5;235m[38;5;249m* Jordi Salvador, and Eduardo Pérez-Pellitero, Naive Bayes Super-Resolution Forest, ICCV 2015[49m[39m
|
||||
[38;5;12m [39m[38;5;12m [39m[48;5;12m[38;5;11m⟡[49m[39m[38;5;12m [39m[38;5;12mGraz University of Technology [39m[38;5;12mPaper[39m[38;5;14m[1m (http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schulter_Fast_and_Accurate_2015_CVPR_paper.pdf)[0m[38;5;12m [39m
|
||||
[48;5;235m[38;5;249m* Samuel Schulter, Christian Leistner, and Horst Bischof, Fast and Accurate Image Upscaling with Super-Resolution Forests, CVPR 2015[49m[39m
|
||||
|
||||
Reference in New Issue
Block a user