Updating conversion, creating readmes
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome AI books[0m
|
||||
[38;5;12m [39m[38;2;255;187;0m[1m[4mAwesome AI books[0m
|
||||
|
||||
[38;5;12mSome awesome AI related books and pdfs for downloading and learning.[39m
|
||||
|
||||
@@ -66,8 +66,7 @@
|
||||
[38;5;12m- [39m[38;5;14m[1mgym-sokoban[0m[38;5;12m (https://github.com/mpSchrader/gym-sokoban): Sokoban is Japanese for warehouse keeper and a traditional video game[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mPommerman[0m[38;5;12m (https://github.com/MultiAgentLearning/playground) Playground hosts Pommerman, a clone of Bomberman built for AI research.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mgym-miniworld[0m[38;5;12m (https://github.com/maximecb/gym-miniworld#introduction) MiniWorld is a minimalistic 3D interior environment simulator for reinforcement learning & robotics research[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mvizdoomgym[0m[38;5;12m [39m[38;5;12m(https://github.com/shakenes/vizdoomgym)[39m[38;5;12m [39m[38;5;12mOpenAI[39m[38;5;12m [39m[38;5;12mGym[39m[38;5;12m [39m[38;5;12mwrapper[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;14m[1mViZDoom[0m[38;5;12m [39m[38;5;12m(https://github.com/mwydmuch/ViZDoom)[39m[38;5;12m [39m[38;5;12m(A[39m[38;5;12m [39m[38;5;12mDoom-based[39m[38;5;12m [39m[38;5;12mAI[39m[38;5;12m [39m[38;5;12mResearch[39m[38;5;12m [39m[38;5;12mPlatform[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mReinforcement[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mfrom[39m[38;5;12m [39m[38;5;12mRaw[39m[38;5;12m [39m[38;5;12mVisual[39m[38;5;12m [39m
|
||||
[38;5;12mInformation)[39m[38;5;12m [39m[38;5;12menviroments.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mvizdoomgym[0m[38;5;12m (https://github.com/shakenes/vizdoomgym) OpenAI Gym wrapper for [39m[38;5;14m[1mViZDoom[0m[38;5;12m (https://github.com/mwydmuch/ViZDoom) (A Doom-based AI Research Platform for Reinforcement Learning from Raw Visual Information) enviroments.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mddz-ai[0m[38;5;12m (https://github.com/freefuiiismyname/ddz-ai) 以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai[39m
|
||||
|
||||
|
||||
@@ -138,8 +137,8 @@
|
||||
[38;5;12m- [39m[38;5;14m[1mCOMMERCIAL[0m[38;5;12m [39m[38;5;14m[1mHuman Compatible: Artificial Intelligence and the Problem of Control[0m[38;5;12m (https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem-ebook/dp/B07N5J5FTS) - Stuart Russell[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mCOMMERCIAL[0m[38;5;12m [39m[38;5;14m[1mLife 3.0: Being Human in the Age of Artificial Intelligence[0m[38;5;12m (https://www.amazon.com/Life-3-0-Being-Artificial-Intelligence/dp/1101946598) - Max Tegmark[39m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mCOMMERCIAL[0m[38;5;12m [39m[38;5;14m[1mSuperintelligence:[0m[38;5;14m[1m [0m[38;5;14m[1mPaths,[0m[38;5;14m[1m [0m[38;5;14m[1mDangers,[0m[38;5;14m[1m [0m[38;5;14m[1mStrategies[0m[38;5;12m [39m
|
||||
[38;5;12m(https://www.amazon.com/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/0198739834/ref=pd_sbs_14_t_0/146-0357100-6717505?_encoding=UTF8&pd_rd_i=0198739834&pd_rd_r=676ace91-552c-4865-a8d3-6273db5418bf&pd_rd_[39m
|
||||
[38;5;12mw=zYEu2&pd_rd_wg=hQdGQ&pf_rd_p=5cfcfe89-300f-47d2-b1ad-a4e27203a02a&pf_rd_r=DTH77KT4FSVRMJ47GBVQ&psc=1&refRID=DTH77KT4FSVRMJ47GBVQ)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mNick[39m[38;5;12m [39m[38;5;12mBostrom[39m
|
||||
[38;5;12m(https://www.amazon.com/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/0198739834/ref=pd_sbs_14_t_0/146-0357100-6717505?_encoding=UTF8&pd_rd_i=0198739834&pd_rd_r=676ace91-552c-4865-a8d3-6273db5418bf&pd_rd_w=zYEu2&pd_rd_wg=hQdGQ&pf[39m
|
||||
[38;5;12m_rd_p=5cfcfe89-300f-47d2-b1ad-a4e27203a02a&pf_rd_r=DTH77KT4FSVRMJ47GBVQ&psc=1&refRID=DTH77KT4FSVRMJ47GBVQ)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mNick[39m[38;5;12m [39m[38;5;12mBostrom[39m
|
||||
|
||||
[38;2;255;187;0m[4mQuantum with AI[0m
|
||||
|
||||
@@ -161,14 +160,13 @@
|
||||
[38;5;12m - [39m[38;5;14m[1mStable Diffusion[0m[38;5;12m (https://github.com/CompVis/stable-diffusion) - [39m[38;5;12mPaper[39m[38;5;14m[1m (https://arxiv.org/abs/2112.10752)[0m[38;5;12m A latent text-to-image diffusion model[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mStable Diffusion V2[0m[38;5;12m (https://github.com/Stability-AI/stablediffusion) - High-Resolution Image Synthesis with Latent Diffusion Models[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mGFPGAN[0m[38;5;12m (https://github.com/TencentARC/GFPGAN) - [39m[38;5;12mPaper[39m[38;5;14m[1m (https://arxiv.org/abs/2101.04061)[0m[38;5;12m GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mESRGAN[0m[38;5;12m [39m[38;5;12m(https://github.com/xinntao/ESRGAN)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mPaper[39m[38;5;14m[1m [0m[38;5;14m[1m(https://arxiv.org/abs/2107.10833)[0m[38;5;12m [39m[38;5;12mECCV18[39m[38;5;12m [39m[38;5;12mWorkshops[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mEnhanced[39m[38;5;12m [39m[38;5;12mSRGAN.[39m[38;5;12m [39m[38;5;12mChampion[39m[38;5;12m [39m[38;5;12mPIRM[39m[38;5;12m [39m[38;5;12mChallenge[39m[38;5;12m [39m[38;5;12mon[39m[38;5;12m [39m[38;5;12mPerceptual[39m[38;5;12m [39m[38;5;12mSuper-Resolution.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mcodes[39m[38;5;12m [39m[38;5;12mare[39m[38;5;12m [39m[38;5;12min[39m[38;5;12m [39m
|
||||
[38;5;12mBasicSR.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mESRGAN[0m[38;5;12m (https://github.com/xinntao/ESRGAN) - [39m[38;5;12mPaper[39m[38;5;14m[1m (https://arxiv.org/abs/2107.10833)[0m[38;5;12m ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mCodeFormer[0m[38;5;12m (https://github.com/sczhou/CodeFormer) - [39m[38;5;12mPaper[39m[38;5;14m[1m (https://arxiv.org/abs/2206.11253)[0m[38;5;12m - [39m[38;5;14m[1mNeurIPS 2022[0m[38;5;12m Towards Robust Blind Face Restoration with Codebook Lookup Transformer[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mUniPC[0m[38;5;12m (https://github.com/wl-zhao/UniPC) - [39m[38;5;12mPaper[39m[38;5;14m[1m (https://arxiv.org/abs/2302.04867)[0m[38;5;12m UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models[39m
|
||||
[38;5;12m- #### Reinforcement Learning[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mA3C[0m[38;5;12m (https://arxiv.org/pdf/1602.01783.pdf) - Google DeepMind Asynchronous Advantage Actor-Critic algorithm[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mQ-Learning[0m[38;5;12m [39m[38;5;12m(http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf)[39m[38;5;12m [39m[38;5;12mSARSA[39m[38;5;12m [39m[38;5;14m[1mDQN[0m[38;5;12m [39m[38;5;12m(https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf)[39m[38;5;12m [39m[38;5;14m[1mDDQN[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1509.06461.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mQ-Learning[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m
|
||||
[38;5;12mvalue-based[39m[38;5;12m [39m[38;5;12mReinforcement[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12malgorithm[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mQ-Learning[0m[38;5;12m [39m[38;5;12m(http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf)[39m[38;5;12m [39m[38;5;12mSARSA[39m[38;5;12m [39m[38;5;14m[1mDQN[0m[38;5;12m [39m[38;5;12m(https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf)[39m[38;5;12m [39m[38;5;14m[1mDDQN[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1509.06461.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mQ-Learning[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mvalue-based[39m[38;5;12m [39m[38;5;12mReinforcement[39m
|
||||
[38;5;12mLearning[39m[38;5;12m [39m[38;5;12malgorithm[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mDDPG[0m[38;5;12m (https://arxiv.org/pdf/1509.02971.pdf) - Deep Deterministic Policy Gradient,[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mLarge-Scale Curiosity[0m[38;5;12m (https://arxiv.org/pdf/1808.04355.pdf) - Large-Scale Study of Curiosity-Driven Learning[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPPO[0m[38;5;12m (https://arxiv.org/pdf/1707.06347.pdf) - OpenAI Proximal Policy Optimization Algorithms[39m
|
||||
@@ -188,8 +186,8 @@
|
||||
[38;5;12m - [39m[38;5;14m[1mCatBoost[0m[38;5;12m (https://arxiv.org/pdf/1706.09516.pdf) ([39m[38;5;14m[1mPython, R, CLI[0m[38;5;12m) - Yandex Catboost lib's key algorithm pdf papper.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mStackNet[0m[38;5;12m (https://github.com/kaz-Anova/StackNet) ([39m[38;5;14m[1mJava, CLI[0m[38;5;12m) - Some model stacking algorithms implemented in this lib.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mRGF[0m[38;5;12m (https://arxiv.org/pdf/1109.0887.pdf) - Learning Nonlinear Functions Using [39m[48;5;235m[38;5;249mRegularized Greedy Forest[49m[39m[38;5;12m (multi-core implementation [39m[38;5;14m[1mFastRGF[0m[38;5;12m (https://github.com/RGF-team/rgf/tree/master/FastRGF))[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mFM[0m[38;5;12m [39m[38;5;12m(https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf),[39m[38;5;12m [39m[38;5;14m[1mFastFM[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1505.00641.pdf),[39m[38;5;12m [39m[38;5;14m[1mFFM[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1701.04099.pdf),[39m[38;5;12m [39m[38;5;14m[1mXDeepFM[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1803.05170.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m
|
||||
[38;5;12mFactorization[39m[38;5;12m [39m[38;5;12mMachines[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12msome[39m[38;5;12m [39m[38;5;12mextended[39m[38;5;12m [39m[38;5;12mAlgorithms[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mFM[0m[38;5;12m [39m[38;5;12m(https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf),[39m[38;5;12m [39m[38;5;14m[1mFastFM[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1505.00641.pdf),[39m[38;5;12m [39m[38;5;14m[1mFFM[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1701.04099.pdf),[39m[38;5;12m [39m[38;5;14m[1mXDeepFM[0m[38;5;12m [39m[38;5;12m(https://arxiv.org/pdf/1803.05170.pdf)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mFactorization[39m[38;5;12m [39m[38;5;12mMachines[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12msome[39m[38;5;12m [39m[38;5;12mextended[39m[38;5;12m [39m[38;5;12mAlgorithms[39m
|
||||
[38;5;12m- #### Deep Learning[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mGNN Papers[0m[38;5;12m (https://github.com/thunlp/GNNPapers) - Must-read papers on graph neural networks (GNN)[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mEfficientNet[0m[38;5;12m (https://arxiv.org/pdf/1905.11946.pdf) - Rethinking Model Scaling for Convolutional Neural Networks[39m
|
||||
@@ -222,16 +220,14 @@
|
||||
[38;5;12m - [39m[38;5;14m[1mLDA[0m[38;5;12m (https://www.isip.piconepress.com/publications/reports/1998/isip/lda/lda_theory.pdf) ([39m[38;5;14m[1mLinear[0m[38;5;12m) - Linear Discriminant Analysis[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mLLE[0m[38;5;12m (https://cs.nyu.edu/~roweis/lle/papers/lleintro.pdf) ([39m[38;5;14m[1mNon-linear[0m[38;5;12m) - Locally linear embedding[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mLaplacian Eigenmaps[0m[38;5;12m (http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NC_03.pdf) - Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[39m
|
||||
[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mSammon[0m[38;5;14m[1m [0m[38;5;14m[1mMapping[0m[38;5;12m [39m[38;5;12m(http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0910/henderson.pdf)[39m[38;5;12m [39m[38;5;12m([39m[38;5;14m[1mNon-linear[0m[38;5;12m)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mSammon[39m[38;5;12m [39m[38;5;12mmapping[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mdesigned[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mminimise[39m[38;5;12m [39m[38;5;12mthe[39m[38;5;12m [39m[38;5;12mdifferences[39m[38;5;12m [39m[38;5;12mbetween[39m[38;5;12m [39m[38;5;12mcorresponding[39m[38;5;12m [39m[38;5;12minter-point[39m[38;5;12m [39m[38;5;12mdistances[39m
|
||||
[38;5;12min[39m[38;5;12m [39m[38;5;12mthe[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mSammon Mapping[0m[38;5;12m (http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0910/henderson.pdf) ([39m[38;5;14m[1mNon-linear[0m[38;5;12m) - Sammon mapping is designed to minimise the differences between corresponding inter-point distances in the[39m
|
||||
[38;5;12mtwo spaces[39m
|
||||
[38;5;12m- #### Data Processing[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPandas[0m[38;5;12m (https://github.com/pandas-dev/pandas) ([39m[38;5;14m[1mPython[0m[38;5;12m) - Flexible and powerful data analysis / manipulation library for Python.[39m
|
||||
[38;5;12m - [39m[38;5;14m[1mPolars[0m[38;5;12m (https://github.com/pola-rs/polars) ([39m[38;5;14m[1mRust, Python[0m[38;5;12m) - Lightning-fast DataFrame library for Rust and Python.[39m
|
||||
|
||||
[38;2;255;187;0m[4mDistributed training[0m
|
||||
[38;5;12m-[39m[38;5;12m [39m[38;5;14m[1mHorovod[0m[38;5;12m [39m[38;5;12m(https://github.com/horovod/horovod#usage)[39m[38;5;12m [39m[38;5;12m-[39m[38;5;12m [39m[38;5;12mHorovod[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12ma[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mtraining[39m[38;5;12m [39m[38;5;12mframework[39m[38;5;12m [39m[38;5;12mfor[39m[38;5;12m [39m[38;5;12mTensorFlow,[39m[38;5;12m [39m[38;5;12mKeras,[39m[38;5;12m [39m[38;5;12mPyTorch,[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m[38;5;12mMXNet.[39m[38;5;12m [39m[38;5;12mThe[39m[38;5;12m [39m[38;5;12mgoal[39m[38;5;12m [39m[38;5;12mof[39m[38;5;12m [39m[38;5;12mHorovod[39m[38;5;12m [39m[38;5;12mis[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12mmake[39m[38;5;12m [39m[38;5;12mdistributed[39m[38;5;12m [39m[38;5;12mDeep[39m[38;5;12m [39m[38;5;12mLearning[39m[38;5;12m [39m[38;5;12mfast[39m[38;5;12m [39m[38;5;12mand[39m[38;5;12m [39m
|
||||
[38;5;12measy[39m[38;5;12m [39m[38;5;12mto[39m[38;5;12m [39m[38;5;12muse.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mHorovod[0m[38;5;12m (https://github.com/horovod/horovod#usage) - Horovod is a distributed training framework for TensorFlow, Keras, PyTorch, and MXNet. The goal of Horovod is to make distributed Deep Learning fast and easy to use.[39m
|
||||
[38;5;12m- [39m[38;5;14m[1mAcme[0m[38;5;12m (https://github.com/deepmind/acme) - A Research Framework for (Distributed) Reinforcement Learning. [39m
|
||||
[38;5;12m- [39m[38;5;14m[1mbagua[0m[38;5;12m (https://github.com/BaguaSys/bagua) - Bagua is a flexible and performant distributed training algorithm development framework.[39m
|
||||
|
||||
|
||||
Reference in New Issue
Block a user